Nutrient recovery from the dry grind process using sequential micro and ultrafiltration of thin stillage.
نویسندگان
چکیده
The effectiveness of microfiltration (MF) and ultrafiltration (UF) for nutrient recovery from a thin stillage stream was determined. When a stainless steel MF membrane (0.1microm pore size) was used, the content of solids increased from 7.0% to 22.8% with a mean permeate flux rate of 45L/m(2)/h (LMH), fat increased and ash content decreased. UF experiments were conducted in batch mode under constant temperature and flow rate conditions. Permeate flux profiles were evaluated for regenerated cellulose membranes (YM1, YM10 and YM100) with molecular weight cut offs of 1, 10 and 100kDa. UF increased total solids, protein and fat and decreased ash in retentate stream. When permeate streams from MF were subjected to UF, retentate total solids concentrations similar to those of commercial syrup (23-28.8%) were obtained. YM100 had the highest percent permeate flux decline (70% of initial flux) followed by YM10 and YM1 membranes. Sequential filtration improved permeate flux rates of the YM100 membrane (32.6-73.4LMH) but the percent decline was also highest in a sequential MF+YM100 system. Protein recovery was the highest in YM1 retentate. Removal of solids, protein and fat from thin stillage may generate a permeate stream that may improve water removal efficiency and increase water recycling.
منابع مشابه
Heat transfer fouling characteristics of microfiltered thin stillage from the dry grind process.
We investigated effects of microfiltration (MF) on heat transfer fouling tendencies of thin stillage. A stainless steel MF membrane (0.1 micron pore size) was used to remove solids from thin stillage. At filtration conditions of 690kPa, the MF process effectively recovered total solids from thin stillage. Thin stillage was concentrated from 7.0% to 22.4% solids with average permeate flux rates ...
متن کاملAnalysis of Heat Transfer Fouling by Dry-Grind Maize Thin Stillage Using an Annular Fouling Apparatus
Cereal Chem. 83(2):121–126 In dry-grind processing to produce ethanol from corn, unfermented solids are removed from ethanol by distillation and dried to produce distillers dried grains with solubles (DDGS), an animal food. Fouling of thin stillage evaporators has been identified as an important energy consumption issue in dry-grind facilities. Using an annular fouling apparatus, four batches o...
متن کاملElement concentrations of dry-grind corn-processing streams.
The dry-grind corn process is one of two technologies used to convert corn into ethanol. In this process, all kernel components are processed through several sequential steps, including fermentation. Only one coproduct (distillers' dried grains with solubles [DDGS]) is available for marketing. DDGS provide income to offset costs of processing; issues that affect marketing have implications in t...
متن کاملIndustrial symbiosis: corn ethanol fermentation, hydrothermal carbonization, and anaerobic digestion.
The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By...
متن کاملEffect of the corn breaking method on oil distribution between stillage phases of dry-grind corn ethanol production.
The majority of fuel ethanol in the United States is produced by using the dry-grind corn ethanol process. The corn oil that is contained in the coproduct, distillers' dried grains with solubles (DDGS), can be recovered for use as a biodiesel feedstock. Oil removal will also improve the feed quality of DDGS. The most economical way to remove oil is considered to be at the centrifugation step fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 101 11 شماره
صفحات -
تاریخ انتشار 2010